89. Über die Bildung von Dihydro-1,2-oxazin-N-oxiden durch intramolekulare Addition eines Nitronat-Anions an eine Carbonylgruppe

von Frank Kienzle*, Jean-Yves Fellmann und Josef Stadlwieser¹)

Pharmazeutische Forschungsabteilung der F. Hoffmann-La Roche & Co., AG, CH-4002 Basel

(17.II.84)

The Formation of Dihydro-1,2-oxazine N-Oxides through an Intramolecular Addition of a Nitronate Anion to a Carbonyl Group

Summary

Highly substituted 4-keto-1-nitroalkanes cyclize under basic conditions to dihydro-1,2-oxazine N-oxides. These N-oxides are thermally unstable and decompose to 1,4-diketones. BF₃ catalyzes a similar decomposition, but probably via a different mechanism.

Aus Nitronaten 1 von 4-Keto-1-nitroalkanen entstehen beim vorsichtigen Ansäuren rasch die entsprechenden 4-Keto-1-nitronsäuren 2, die sich dann langsamer zu den stabileren offenkettigen 4-Keto-1-nitroalkanen 3 tautomerisieren [1–4]. Ein ringtautomeres Dihydro-1,2-oxazin-N-oxid der generellen Formel 4 wurde nur in einem Fall (5) sicher nachgewiesen und isoliert [2] [5] (Schema 1). Als Gründe für das Auftreten von 5 wurden eine langsame Deprotonierung der in 5 axialen OH-Gruppe und eine sterische Hinderung bei der Protonierung des N-tragenden C-Atoms vermutet [2].

Wir haben nun gefunden, dass bei basenkatalysierter Anlagerung von Nitroalkanen 6 an 4,4-Dimethyl-2-cyclohexenon (7) neben den erwarteten offenkettigen Nitroverbindungen 8 auch Dihydro-1,2-oxazin-N-oxide 9 isoliert werden können (Schema 2). Das Verhältnis von 8 zu 9 hängt von der Grösse des Alkanrestes ab. Während eine Nitromethan-Anlagerung ausschliesslich zum offenen Produkt 8a führt, gibt schon Nitroäthan als Hauptprodukt 9b. Bei der Verwendung von 2-Methyl-1-nitropropan 6e lässt sich nur 9e isolieren.

Bei den offenkettigen Nitroverbindungen 8 können Diastereoisomere auftreten. Im Falle von 8d lassen sich zwei im DC unterscheidbare Verbindungen mit unterschiedlichen Schmp. isolieren. Sie zeigen sehr ähnliche, aber nicht identische ¹H-NMR- und IR-Spektren. Den endgültigen Beweis, dass es sich hierbei um Diastereoisomere handelt, erbringt ihre getrennte Behandlung zuerst mit Base, dann mit Säure: Aus reinen Ausgangsmaterialien entsteht neben Dihydro-1,2-oxazin-N-oxid 9d jeweils auch das andere Isomere. Die genaue Konfiguration der beiden Isomeren lässt sich nicht feststellen.

Strukturbeweis für 9. Unser Strukturvorschlag stützt sich auf korrekte Elementaranalysen sowie die UV-, IR-, 'H-NMR- und Massenspektren.

¹) Jetzige Adresse: Universität Innsbruck, Institut für org. pharm. Chemie.

Die Verbindungen **9b–e** zeigen im UV-Spektrum (EtOH) eine starke Absorption bei 230–232 nm. Der für **5** veröffentlichte Wert beträgt 228 nm [2]. Im Gegensatz zu den offenkettigen Nitroverbindungen **8**, die im IR (KBr) keine Absorptionen im OH-Bereich, dafür eine starke Bande bei *ca*. 1710 (CO) und *ca*. 1550 cm⁻¹ (NO₂) zeigen, finden wir bei **9b–d** eine OH-Absorption bei *ca*. 3100 cm⁻¹ (**9b**, 3046; **9c**, 3088; **9d**, 3107; **9e**, 3113 cm⁻¹), keine Bande im CO- (1650–1800 cm⁻¹) und NO₂-Bereich (1500–1580 cm⁻¹), dafür eine starke Absorption für C=N bei 1600 (**9b**), 1592 (**9c**, **9e**) und 1594 cm⁻¹ (**9d**). Dies ist in Übereinstimmung mit Literaturbefunden [5], wonach für **5** eine starke (C=N)-Absorption bei 1615 cm⁻¹ beobachtet wurde. Alle offenkettigen Nitroverbindungen **8a–d** zeigen im ¹H-NMR-Spektrum für die Protonen, die sich am NO₂-tragenden C-Atom befinden, Signale zwischen 4 und 5 ppm. Die Spektren der Verbindungen **9b–e** dagegen weisen oberhalb 3 ppm, ausser dem der OH-Gruppe zuzuordnenden Signal bei *ca*. 6–7 ppm, keine weiteren Signale auf. Dies spricht klar dafür, dass das N-Atom doppelt an das sekundäre C-Atom gebunden sein muss. Die MS der Dihydro-1,2-oxazin-*N*-oxide **9b–e** zeigen kein Molekülion. Bei allen findet man jedoch ein [*M*-16]⁺-Fragment (Intensität *ca*. 15%). Dieser O-Vcrlust im MS ist ziemlich charakteristisch für *N*-Oxide [6]. Die offenkettigen Nitroverbindungen

790

8a-d zeigen ebenfalls kein oder ein nur schwaches (*ca.* 1%) Molekülion. Man findet jedoch kein $[M-16]^+$ -Fragment, dafür als schwerste Fragmente (Intensitäten *ca.* 10–15%) zwei, die durch Verlust von NO₂ und HNO₂ erklärt werden können.

Die Dihydro-1,2-oxazin-N-oxide **9b-e** geben in EtOH-Lösung beim Behandeln mit einer verdünnten FeCl₃-Lösung spontan die für Nitronsäuren charakteristische tiefrote Farbe (*Konowalov*-Reaktion) [7] [8]. Die offenkettigen Verbindungen reagieren nicht. Für weitere chemische Reaktionen, s. unten.

Konfiguration von 9. Anhand von Modellen kann man leicht zeigen, dass ein Ringschluss zu einem Dihydro-1,2-oxazin-N-oxid der Formel 9 nur axial möglich ist. Demnach muss die OH-Gruppe äquatorial angeordnet sein (s. A in Schema 2). Bei einer äquatorialen Nitroalkyl-Seitenkette wäre der Abstand des O-Atoms der NO₂-Gruppe zur (C=O)-Gruppe für einen Ringschluss zu gross.

Chemische Reaktionen von 9. Die Dihydro-1,2-oxazin-N-oxide sind relativ stabil. Sie können umgefällt und meistens sogar säulenchromatographisch gereinigt werden. Auf DC-Platten wandern sie mit Hexan/AcOEt 1:1 nur wenig (R_f ca. 0,1) vom Start weg (roter Fleck mit FeCl₃/EtOH). Die offenkettigen Nitroverbindungen 8 sind viel weniger polar (R_f ca. 0,7; unsichtbar mit FeCl₃, aber (wie auch 9) sichtbar mit I₂-Dampf).

Die Stabilität der Dihydro-1,2-oxazin-N-oxide 9 nimmt zwar mit der Grösse des Alkylrests R zu, alle jedoch wandeln sich in CH_2Cl_2 -Lösung langsam in mehrere Produkte um. Beim Zerfall von 9c-e isolierten wir nur die entsprechenden Hauptumwandlungsprodukte 10c-e²). Im Falle der vergleichsweise instabilsten Verbindung 9b untersuchten wir den Zerfall genauer. Als Hauptprodukt entsteht das Diketon 10b; daneben bildet sich auch immer die zu erwartende offenkettige Nitroverbindung 8b, und je nach Reaktionsbedingungen (s. unten) tritt auch das Mono-oxim 11b als (E/Z)-Gemisch und dessen ringtautomeres Dihydro-1,2-oxazin 12 in wechselnden Mengen auf (Schema 3). Gelindes Erwärmen beschleunigt die Umwandlung. Für 9b genügt jedoch schon Raumtemperatur, um es in ca. 2 Std. vollständig zu zerstören. In einem Fall hat sich sogar festes, getrocknetes 9b spontan erwärmt, ist geschmolzen und hat unter Entwicklung eines mit H₂O nicht sauer reagierenden Gases (N₂O?) hauptsächlich 10b ergeben. Die thermische Zersetzung wird verlangsamt durch rigorosen O₂-Ausschluss und in Anwesenheit von wenig BHT (2,6-Di-(*tert*-butyl)-*p*-kresol).

b-e: s. Schema 2

Diese Umwandlung $9 \rightarrow 10$ kann in Lösung durch Zugabe einer katalytischen Menge BF₃-ätherat auf wenige Minuten verkürzt werden. Die Anwesenheit einer Spur H₂O ist ebenfalls notwendig. Die zunächst farblose Lösung von 9 färbt sich bei BF₃-

²) Die flüssigen Diketone 10b-c wurden als feste Dioxime charakterisiert.

Zugabe grün-blau. BF₃-katalysiert entsteht aus 9 fast ausschliesslich das Diketon 10; bei thermischer Zersetzung tritt vermehrt – wie im Fall von 9b gezeigt – 11 und 12 auf.

Die Struktur von 12 ergib sich eindeutig aus analytischen und spektralen Daten. So ist im IR-Spektrum (KBr) keine CO-Absorption zu sehen. Das MS ist sehr ähnlich, aber nicht identisch mit dem von 11. In Lösung wandelt sich das im DC schneller laufende 12 in das polarere 11 um. Im Gegensatz zu den Dihydro-1,2-oxazin-N-oxiden 9 sind Dihydro-1,2-oxazine vom Typ 12 häufig beobachtet worden [9-11].

Die thermische und säurekatalysierte Instabilität der Dihydro-1,2-oxazin-N-oxide macht es schwierig, chemische Reaktionen durchzuführen. So ist es nicht möglich, unter verschiedenen Bedingungen wie $Ac_2O/Pyridin$, AcCl/NaOH, Ac_2O/BF_3 oder $Ac_2O/4$ -(Dimethylamino)pyridin die OH-Gruppe zu acetylieren. Man findet dabei immer neben Spuren von anderen, nicht näher identifizierten Verbindungen die schon oben erwähnten Umwandlungsprodukte. Mit Diketen in CH_2Cl_2 -Lösung in Anwesenheit von Et_3N lassen sich jedoch die öligen Acetoessigsäureester **13b-d** herstellen, die wie erwartet als Keto/Enolgemische vorliegen.

Eine saubere katalytische Hydrierung über Pd/C ist ebenfalls durch die Instabilität von 9 in Lösung erschwert. Es gelingt jedoch, 9d in guter Ausbeute zum entsprechenden Mono-oxim 11d zu hydrieren.

Die relative Stabilität der Dihydro-1,2-oxazin-N-oxide ist wahrscheinlich durch eine sterische Hinderung der Protonierung am NO_2 -Gruppe-tragenden C-Atom bedingt. Ihre Isolierung wird ferner durch ihre Kristallisationsneigung begünstigt. Es wäre daher nicht konsequent, die thermische und säurekatalysierte Umwandlung von 9 nach 10 und 11 mit einer normalen Nef-Reaktion zu erklären. Diese müsste [12] zunächst über eine Zwischenverbindung 14 verlaufen, die durch Angriff von OH⁻ am hier sterisch gehinderten C-Atom entstehen würde.

Die Befunde lassen auch den Schluss zu, das die thermische Zersetzung und die BF_3 -katalysierte Umwandlung von 9 nach zwei verschiedenen Mechanismen ablaufen. Die thermische Zersetzung, die durch Zusatz eines Radikalfängers wie BHT verlangsamt wird, könnte radikalisch ablaufen. Dafür spricht auch die spontane Zersetzung von 9b, die durch Sauerstoff- und Lichtausschluss verhindert werden kann. Es ist bekannt [13] [14], dass Nitro-Radikalanionen in festem Zustand und in Lösung leicht durch einen Elektronentransfer zwischen einer Nitronsäure und ihrem Anion, die ja hier eventuell vorliegen, gebildet werden; Oxime entstehen dabei als charakteristische Dissoziationsprodukte (Schema 4).

Schema 4

$$R_{2}C=NO_{2}H + R_{2}C=NO_{2}^{\ominus} \rightarrow R_{2}\dot{C}NO_{2} + R_{2}\dot{C}N \qquad \rightarrow R_{2}C=NO^{\ominus} + HO^{i}$$

Die BF₃-katalysierte Umwandlung $9 \rightarrow 10$ könnte über ein reaktives Kation 15 oder, was weniger wahrscheinlich, aber nicht auszuschliessen ist, über ein Oxiran 16 führen (Schema 5). Für beide Typen von reaktiven Zwischenverbindungen gibt es Literaturbeispiele. So werden instabile Oxazirane [15] [16] bei der Oxydation von primären Nitroalkanen mit Ac₂O/NaOAc zu Carbonsäuren als Zwischenstufen vorgeschlagen [17]. Die BF₃-katalysierte Umwandlung von Isoxazolin-N-oxiden in Indole, eine Reaktion, die unserer näher steht, verläuft anscheinend [18] über Kationen ähnlicher Art. Eine Nitrosoverbindung 17 ist sehr wahrscheinlich ein Zwischenprodukt, da die für Nitrosoverbindungen charakteristische grün-blaue Färbung bei der Reaktion jeweils zu beobachten ist. Das Zwischenprodukt 17 könnte sowohl aus 15 durch Anlagerung von OH⁻ wie auch aus 16 durch Öffnung des Oxiranringes entstehen. Auch bei einer normal verlaufenden Nef-Reaktion würde 17 auftreten; allerdings würde sie über die Zwischenverbindung 14 entstehen. Ein Entscheid für den einen oder anderen Weg ist uns im Moment nicht möglich.

Wir danken folgenden Kollegen für zahlreiche spektroskopische und analytische Untersuchungen: Dr. G. Englert und Dr. W. Arnold (NMR), Dr. W. Vetter und W. Meister (MS), Dr. L. Chopard (IR), Frau Dr. M. Grosjean (UV), sowie Dr. A. Dirscherl (Mikroanalysen). Für hilfreiche Diskussionen danken wir Prof. J. E. Baldwin und Dr. A. Kaiser.

Experimenteller Teil

Allgemeines. Org. Extrakte wurden über wasserfreiem Na₂SO₄ getrocknet und nach Filtration i.RV. bei 30–40°/15–20 Torr eingedampft. Schmp. sind nicht korrigiert. Sie wurden in einem Apparat nach *Tottoli* bestimmt. Dünnschichtchromatographie (DC) wurde mit DC-Fertigplatten Kieselgel F_{254} (Merck), Säulenchromatographie mit Kieselgel 60 (230–400 mesh; Merck) ausgeführt. Für alle Substanzen wurden korrekte Elementaranalysen (C, H und N) erhalten. Die leicht zu interpretierenden ¹H-NMR- und IR-Spektren waren im Einklang mit den vorgeschlagenen Strukturen.

Allgemeine Vorschrift zur Herstellung der Dihydro-1,2-oxazin-N-oxide 9b-e. Zu einer Lösung von 0,50 mol 4,4-Dimethyl-2-cyclohexenon (7) [19] und 0,55 mol Nitroalkan 6 in 300 ml abs. MeOH werden unter kräftigem Rühren langsam 0,55 mol NaOMe (30proz. in MeOH) getropft. Dabei tritt sofort ein weisser Niederschlag auf und die Temp. steigt auf 30-35°. Die entstehende Suspension wird 16 Std. unter Ar bei RT., dann noch 4 Std. unter Rückfluss gerührt. Der Reaktionsverlauf kann mittels DC verfolgt werden. Dabei wird eine Probe mit AcOEt verdünnt, vorsichtig mit 2N HCl angesäuert und im DC (AcOEt/Hexan 1:1) analysiert (9b-e mit FeCl₃ rot). Die nun klare, hellgelbe Lösung wird abgekühlt und i.RV. bei 15 Torr eingeengt bis eine deutliche Trübung auftritt. Das Gemisch wird nun mit etwas festem Eis versetzt, mit Eis/NaCl gekühlt und vorsichtig unter Rühren mit 2N HCl auf pH 2-3 angesäuert. Unter deutlicher Blaufärbung der Lösung fällt das Dihydro-1,2-oxazin-N-oxid als feinkristalliner Niederschlag aus. Das abgenutschte Produkt wird 2mal auf der Nutsche in eiskaltem H₂O suspendiert und wieder abgesaugt. Dieser Prozess wird noch 2mal mit eincm (3:1)-Gemisch Hexan/Et₂O wiederholt. Das Produkt wird darauf unter Lichtausschluss i.V. getrocknet. Die Verbindungen 9b-e sind löslich in EtOH CH₂Cl₂, CHCl₃ und AcOEt und unlöslich in Hexan und Et₂O. Bei -20° sind sie in fester Form haltbar. 1-Hydroxy-4,6,6-trimethyl-2-oxa-3-azabicyclo[3.3.1]non-3-en-3-oxid (9b): 54%, Schmp. 63-64°. 4-Äthyl-1-hydroxy-6,6-dimethyl-2-oxa-3-azabicyclo[3.3.1]non-3-en-3-oxid (9c): 51%, Schmp. 87°. 1-Hydroxy-6,6dimethyl-4-propyl-2-oxa-3-azabicyclo[3.3.1]non-3-en-3-oxid (9d): 51%, Schmp. 86°. 1-Hydroxy-4-isopropyl-6,6dimethyl-2-oxa-3-azabicyclo[3.3.1]non-3-en-3-oxid (9e): 32%, Schmp. 88-89°.

Allgemeine Vorschrift zur Herstellung der Diketone **10b–e**. Eine Lösung von 0,02 mol **9** in 50 ml CH₂Cl₂ wird unter Ar und Lichtausschluss zu gelindem Rückfluss erhitzt. Zur siedenden Lösung werden 0,5 ml BF₃ätherat gegeben, wobei sofort eine grün-blaue Färbung auftritt. Nach 10 Min. werden 2 Tropfen H₂O zugegeben. Die Lösung entfärbt sich und ein Gas entweicht. Nach 1 Std. wird abgekühlt, die Lösung Imal mit H₂O gewaschen, getrocknet und abgedampft. Der Rückstand wird chromatographisch mit AcOEt/Hexan 1:4 gereinigt: **10b–d** als Öle, Ausbeuten *ca*. 70%; kristalline Dioxim-Derivate. Nebenprodukte sind nicht isoliert, im Falle von **10b** jedoch im DC mit **11b** und **12** verglichen und so identifiziert worden. (2,2-Dimethyl-5-oxocyclohexyl)methylketon (**10b**): Dioxim, Schmp. 171°. Äthyl(2,2-dimethyl-5-oxocyclohexyl)keton (**10c**): Dioxim, Schmp. 152°. (2,2-Dimethyl-5-oxocyclohexyl)propylketon (**10d**): Dioxim; Schmp. 149°. (2,2-Dimethyl-5-oxocyclohexyl)isopropylketon (**10e**): Schmp. 36–37°.

Allgemeine Vorschrift zur Herstellung der offenkettigen Nitroverbindungen **8a-d**. Zu einem gerührten Gemisch aus 0,1 mol **7** und 0,11 mol **6** werden unter zeitweiligem Kühlen 46 g (0,11 mol) 40proz. Triton-B-Lösung (in H₂O) getropft. Das Gemisch wird 18 Std. bei RT. und dann noch 5 Std. bei 50° gerührt. Die Lösung wird mit eiskaltem CH₂Cl₂ verdünnt und mit 200 ml kaltem H₂O versetzt. Unter Rühren wird das Gemisch dann mit kalter N H₂SO₄ neutralisiert. Die org. Phase wird abgetrennt, mit kalter NaHCO₃-Lösung gewaschen, getrocknet und eingedampft. Der Rückstand zeigt im DC (AcOEt/Hexan 2:1) neben nicht umgesetztem **7** (R_f ca. 0,4) die Anwesenheit von polarerem **8** (R_f ca. 0,3) neben 9 (R_f ca. 0,05) und **10** (R_f ca. 0,25). Die Produkte werden chromatographisch gereinigt. Im Falle von **6a** wird nur **8a** nachgewiesen, neben einer langsamer laufenden Substanz (Schmp. 147–148°), die 2 Moleküle **7** auf ein Molekül **6a** enthält, deren genaue Struktur jedoch nicht bestimmt worden ist. 4.4-Dimethyl-3-(nitromethyl) cyclohexanon (**8a**): 51%, Schmp. 53°. 4.4-Dimethyl-3-(1-nitroäthyl) cyclohexanon (**8b**): 40%, Schmp. 64°. 4.4-Dimethyl-3-(1-nitropropyl) cyclohexanon (**8c**): 3%, Schmp. 60-61°. 4.4-Dimethyl-3-(1-nitrobutyl) cyclohexanon (**8d**): 15%, Schmp. 52 und 98° (s. Allgem. Teil).

3-[1-(Hydroxyimino)butyl]-4,4-dimethylcyclohexanon (11d). Eine Lösung von 2,27 g (0,01 mol) 9d in 50 ml i-PrOH und 1 ml Et₃N wird nach Zugabe von 200 mg 5proz. Pd/C bei RT. unter H₂ geschüttelt. Nach Aufnahme von ca. 250 ml H₂ wird der Katalysator abfiltriert und die Lösung eingedampft. Der Rückstand wird chromatographisch (AcOEt/Hexan 1:4) gereinigt und dann im Kugelrohr destilliert: 1 g 11d Sdp. 185°/0,22 Torr; charakterisiert als kristallines Monobenzoat, Schmp. 88–89°.

Thermische Zersetzung von 9b. In einem mit einem CaCl₂-Rohr verschlossenen Rundkolben werden 30 g 9b bei RT. stehen gelassen. Schon nach 1 Std. hat sich das farblose, kristalline 9b in ein braunes, zähflüssiges Öl umgewandelt. Das DC zeigt neben geringen Mengen 9b die Anwesenheit von wenig 8b, als Hauptprodukt 10b, daneben 11b und 12. Säulenchromatographisch (AcOEt/Hexan 1:4) werden isoliert und charakterisiert: 0,5 g nicht ganz reines **8b**, 12 g **10b**, 3,5 g 3-[*1*-(*Hydroxyimino*)*äthyl*]-4,4-dimethylcyclohexanon (**11b**) als öliges (Z/E)-Gemisch, aus dem beim Stehen ein reines Isomeres mit Schmp. 96–98° auskristallisiert, und 40 mg 4,6,6-Trimethyl-2-oxa-3-azabicyclo[3.3.1]non-3-en-1-ol (**12**), Schmp. 120–121°.

Allgemeine Vorschrift zur Herstellung der Acetoacetate 13b-d. In eine Lösung von 0,05 mol 9 in 150 ml abs. CH_2Cl_2 werden 0,055 mol Diketen gegeben. Unter Rühren werden dann 5 mmol Et_3N zugetropft, wobei sich das Gemisch erwärmt. Nun wird 2 Std. unter gelindem Rückfluss erhitzt und dann das Lösungsmittel abgedampft. Der Rückstand wird chromatographisch (AcOEt/Hexan, 1:2) gereinigt. Alle 3 Substanzen 13b-d werden als Öle in *ca.* 30-40 proz. Ausbeute erhalten, die sich beim Erhitzen zersetzten. Sie reagieren wie erwartet mit FeCl₃ positiv.

LITERATURVERZEICHNIS

- [1] M.E. Kuehne & L. Foley, J. Org. Chem. 30, 4280 (1965).
- [2] A.T. Nielsen & T.G. Archibald, J. Org. Chem. 34, 1470 (1969).
- [3] A.T. Nielsen, in 'The Chemistry of the Nitro and Nitroso Groups', Part I, Ed. H. Feuer, Wiley Interscience, New York, 1969, S.349.
- [4] E. Breuer, in 'Supplement F: The Chemistry of Amino, Nitroso and Nitro Compounds and their Derivatives', Part I, Ed. S. Patai, Wiley Interscience, New York, 1982, S. 459.
- [5] E.B. Hodge & R. Abbott, J. Org. Chem. 27, 2254 (1962).
- [6] R. Grigg & B.G. Odell, J. Chem. Soc. (B) 1966, 218.
- [7] M.I. Konowalov, Chem. Ber. 29, 2193 (1896).
- [8] E. W. Scott & J. F. Treon, Ind. Eng. Chem. Anal. Ed. 12, 189 (1940).
- [9] R. Escale, R. Jacquier, B. Ly, F. Petrus & J. Verducci, Tetrahedron 32, 1369 (1976).
- [10] O.P. Shelyapin, I.V. Samartseva & L.A. Pavola, Zh. Org. Khim. 9, 2412 (1973).
- [11] F. Eiden & C. Schmiz, Arch. Pharm. 309, 1728 (1976).
- [12] M.F. Hawthorne, J. Am. Chem. Soc. 79, 2510 (1957).
- [13] N. Kornblum, in Ref. [4], Kapitel 10.
- [14] A.T. Nielsen, in Ref. [3], Kapitel 7.
- [15] C.J. O'Conner, E.J. Fendler & J.H. Fendler, J. Chem. Soc., Perkin Trans. 2 1973, 1747.
- [16] T. Wieland & D. Grim, Chem. Ber. 96, 275 (1963).
- [17] A. McKillop & R.J. Kobylecki, Tetrahedron 30, 1365 (1974).
- [18] E. Kaji & S. Zen, Heterocycles 13, 187 (1979).
- [19] Y. Chan & W. W. Epstein, Org. Synth. 53, 48 (1973).